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Phase transitions in csos models 

Ronald Rietman and Bernard Nienhuis 
lnstituut voor Theoretische Fysica, Valckenierstraat 65. 1018 XE Amsterdam, The Nether- 
lands 

Received 5 November 1990 

Abstract. The exact solution of the csos models by Pearce and Seaton is analysed. This 
solution appears to describe a first-order transition without droplet singularities. We show 
that the system with free boundaries has no such transition, whereas the system with fixed 
boundary conditions has a first-order transition at an anisotropy dependent locus, unlike 
the findings of Pearce and Seaton. We also explain the absence of droplet singularities. 
Finally we present a simple Cculomb gas calculation of some critical exponents, resulting 
in the same expressions as given by Pearce and Seaton. 

1. Introduction 

Recently Pearce and Seaton presented a family of L-states cyclic solid-on-solid models 
that satisfy the Yang-Baxter equation [l]. In [2] they calculate the order parameters 
and the free energy per site for these models (in the thermodynamic limit) and they 
examine the corresponding critical behaviour. The order parameters possess jump 
discontinuities as a function of a parameter w,, of which the free energy is independent. 
These discontinuities do  not form a barrier against analytic continuation, unlike the 
behaviour of other first-order transitions. A well known example is the first-order 
transition in the d-dimensional ( d  2) ferromagnetic Ising model at low temperatures: 
based on studies of the droplet model [3] it has long been suspected that the free 
energy and the magnetization of the king model have no analytical continuation 
through zero magnetic field. This has been shown rigorously some years ago [4]. The 
absence of such ’droplet singularities’ in the csos models must be understood. 

This paper consists of three parts: in the first pan  we define the models and give 
a short review of the calculations given in [2] in order to see where the discontinuities 
in the order parameters come from; in the second part we resolve the paradox about 
the first-order transition without the droplet singularities and in the third pan we give 
an alternative derivation of the critical exponents calculated for these models [2,5,6], 
based on Coulomb gas techniques. 

2. The csos model on a square lattice 

2.1. Definition of the model 

A configuration of the system is specified by giving the heights at all lattice points. In 
the L-states model the heights can take on the integer values 0, 1,. . . , L-1, where 
L > 3. A configuration is allowed when heights on neighbouring sites differ by *l mod L, 
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so, following Pasquier [7], the model can be labelled by the Dynkin diagram of the 
Kac-Moody algebra AY?, (see figure 1). 

The model is of the interaction round a face ( IRF)  type, so the Boltzmann weight 
of a configuration equals the product of the face weights. Therefore the model is 
completely specified by the face weights of the 6 L  configurationst that satisfy the 
adjacency condition. 

A sufficient condition for integrability is the Yang-Baxter equation (YBE) 181. For 
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.".--..A-,- :.*"I.-" *I.- P ---. rnr lllUurlJ ,I L I h C i J  L l l c i  I U L L I I .  

For all a , .  . . , f: 

This equation can be represented graphically as in figure 2. 
Pearce and Seaton's solution of the YBE is given by (see figure 3) 

w( a t 1  a 0 - 1 )  a 

all other weights being equal to zero. 

(2.2a) 

(2 .2b)  

(2.2c) 

( 2 . 2 d )  

1 2  L - 1  

Figure 1. The adjacency graph for the L-states csos models. 

Figure 2. Graphical representation of the Yang-Baxter equation. 

t When L = 4 there are 32 face configurations allowed by the adjacency condition. The 8 additional vortex-like 
configurations have zero Boltzmann weight in Pearce and Seaton's SoIution. 
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Pa ?I 6 .  

Figure 3. The allowed face configurations and weights for the csos models and the 
corresponding 6-vertex configurations. 

Here 

w. = wo+ uA (2.3) 
A=s71fL (2.4) se{] ,  . . , , L- l} and coprime to L 

and all heights are defined mod L. 
The theta functions 6, and 9, are given by 

m 

a,( U, p )  = 2 ~ ~ ' ~  sin U n (1  -2p'" cos 2u +p"")( 1 -p'")  (2.5a) 
" = I  

m 

Q 4 ( u , p ) =  n ( I -p~"-~cos2u+p4"-2)( l -p2~) .  (2.56) 

W and W" are given by the same expression in which U is replaced by U' and U" 
respectively. These spectral parameters satisfy 

" = I  

U ) =  U + U#). (2.6) 

For a system with periodic boundary conditions the face weights W(." i) may be 
given an extra factor F(a, h ) F ( d ,  c)-'G(a, d)G(b ,  c) - '  which cancels out of the 
configuration weight. The weight of a face with anisotropy parameter U is gauge 
equivalent to the weight of the 7112-rotated face with anisotropy A -U: 

Because of the periodicity of the weights and gauge invariance the parameters U, wo 
and p can be chosen to satisfy 

U E (-T+ A, A ]  W O E [ O ,  v )  P E ( O , 1 ) .  (2.8) 
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When U E  ( - . r r+A,O) ,  however, the model is gauge equivalent to the model with 
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P"P w;= -WO mod T (2.9) u ) = - u  s ' = L - s  

so from now on we take 

U E [0, A]. (2.10) 

2.2. The critical limit 

In the limit p + 0 the face weights become independent of a :  

sin(A -U) 
a. + = A  

sin h 

sin U 
sin A 

P . + - = B  

y a - * l = c  

6, + 1 = c. 

(2.11a) 

(2.1 1 b )  

(2 .1 lc )  

(2.1 1 d )  

The model turns into a 6-vertex model with weights A, B and C (see figure 3). This 
6-vertex model is critical [S: chapter 101 since 

A ~ + B ~ - c ~  
A =  =-cosA\E(-I,1). 

2AB 
(2.12) 

When U = A J 2  and p + 0, the model becomes the isotropic and critical F-model 
which can be described by a conformal field theory with central charge c = 1.  Using 
its equivalence with a Coulomb gas and assuming certain scaling relations, the critical 
exponents can be readily determined, as shown in section 4. 

2.3. The ordered limit 

In studying the limit p + 1 it is convenient to use a conjugate nome parametrization. 
Defining E by 

p = exp(-e) 

and using the parameters 

(2.13) 

x = exp (-g) w = exp( -?) u = exp (-?) (2.14) 

the face weights can be rewritten as 

(2.1 Sa) 

( 2 . 1 5 ~ )  

(2.15d) 
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where p(u)=exp[u(A-u)/&],  p = w o / v  and E ( z ) -  E ( ~ , x ~ ~ ) ,  with 
m 

E ( z , x ) =  n (1-x"-'z)( l -x"z-')( l -x") .  (2.16) 
" = I  

The function E has some simple properties: 

a n d f o r O < u < b :  

lim E(zx",  x b )  = 1 

lim E ( z ,  x b )  = 1 - z. 

(2.176) 

(2.17~) 

The limit p + 1 can be taken in many different ways. The most natural choice is to 
keep the original parameters U and p fixed and let x approach zero. Another choice 
is to keep w and p fixed and let x approach zero. In this limit the model becomes 
extremely anisotropic, since U = O( E )  + 0; it is very convenient for calculating order 
parameters. 

We define ground statest as those configurations that give the maximum contribu- 
tion to the partition function in the ordered limit. Since we consider two different 
ordered limits we also have two types of ground states. In addition the ground states 
will depend on the boundary conditions. The ground states for a system with free 
boundary conditions are called 'bulk' ground states. These are calculated in [23 for 
the second ( w  fixed) ordered limit. When p is not a multiple of 1/L they are the 
chequerboard configurations ( a ,  a + 1) and ( U  + 1, a )  with heights alternating between 
a and a + 1 on the even and odd sublattices and with a satisfying 

X-0 

x-0 

(2.18) 

Here [ X I  denotes the integer part of x. 
This equation has L - s solutions, so there are 2( L - s) ground states. When Lp is 

an integer there are additional degeneracies: e.g. for p = 0, there are ground states that 
have height 0 on one sublattice and an arbitrary distribution of heights 1 and L- 1 on 
the other sublattice. 

Since bulk ground states are usually independent of the anisotropy parameter U, 
one expects the same bulk ground states for the first ordered limit (U fixed). A direct 
calculation for a special case in appendix A confirms this; we have no general proof. 

2.4. The order parameters 

The local height probability (LHP) is given by 

1 
Z conr. races 

P ( a ) = -  8(u , ,  a )  n W (face configuration) (2.19) 

t The usual definition of ground states as configurations with maximum Boltrmann weight is inconvenient 
here, because those configurations might depend on p .  
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This is the probability that the height uI at an arbitrary given site, labelled by 1 ,  is a. 
Before presenting the main steps of the calculation given in [2] we give a simple 
discussion of the main properties of this function. First of all, as a function of p it is 
2(L-s)-valued; suppose that /.t is not a multiple of 1/L, then, as p +  1 ,  the system 
freezes into one of its 2(L-s) ground states. It is therefore natural to define 2(L-s) 
functions P'b"'(a), denoting the probability that the height at site 1 is a, given that 
the system is in the (b, c) phase and will thus freeze into the ground state chequerboard 

and the odd sublattice, there are two functions PCb."(a), one for each sublattice that 
site 1 can be part o f  these functions are denoted by Pbb"(a) and P\""(a) for the 
even and odd sublattice respectively. They are functions of p, U and p and they are 
obviously defined only for values of p such that (b, c )  or (c, b)  is a ground state. 
Explicitly: 

R Rietman and B Nienhuis 

configcr._!iQn (b, c )  8 s  p +  1. since this grognd state di&p&hes be!ween !hp even 

P',b.b"'(a) is defined only when [$+PI = [?+PI q=O, 1 .  (2.20) 

Because of the periodicity of the weights, all LHPS are periodic in p with period 1. The 
behaviour in the limit p + 1 follows directly from the fround states: 

(2.21a) 

(2.21b) 

When p is a multiple of 1/ L there are mixed phases: e.g. for p = 0 there are phases 
which can be denoted by (0, L!,) and ( LII, p ) .  The LHP for these mixed phases can be 
calculated as the limit of the LHP for the appropriate pure phase; e.g. 

(2.22) pmL!,) ( a ;  0, U, p )  = lim P$"(a; /.t, U, p )  = lim P?'-"(a; p, U, p ) .  
"IO "to 

The functions P p L - l ' ( a )  and P',"'(a) have the same limit for PTO and pJ0 respec- 
tively; in fact they are the analytical continuation of each other near p = 0. This implies 
that a system in the (0 , l )  phase undergoes a smooth transition into the (0, L-1) phase 
as p goes through zero from above. 

The L H P ~  P',"'(a) are calculated with the aid of the corner transfer matrix (CTM) 

method. An explanation and justification of this 'trick' is given by Baxter in his book 
[S, chapter 131. There are C T M ~  for each phase (b, c): the normalized CTM for the 
lower-right quadrant and phase (b,c) is denoted by A:?' and has elements 

A ( b , c )  1 
nn v..", = n W (face configuration) 

'? E"f. fncar 
(2.23) 

where the product is over all faces of the quadrant and the sum over all configurations 
of the heights on the internal sites; U and U' are the height configurations on the left 
and upper edge respectively. 2"' is a normalization factor needed to make the largest 
element of A:!;' equal to unity, i.e. the element corresponding to the configurations 

c , b , c , b  ,... ) i f q = O  
c ,b , c ,b , c  ,... ) i f q = 1  U'= U =  (UI, U*, U,, u4, us,. . . (2.24) 

CTMS for the upper-right, upper-left and lower-left quadrant are defined similarly, 
and are denoted by B, C and D respectively. From the symmetries of the weights and 
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formula (2.7) it follows that 

where G has matrix elements 
r: -rea( . . .  - \ i l / z ~  
UC7.o'- L "41 nr,, P I 1  

Defining further the matrix S ( n )  by 
""-1 

(2.25a) 

(2.256) 

( 2 . 2 5 ~ )  

I I  1Li 
\A.&", 

S ( a ) , , ,  = &,a&r, (2.27) 

the LHPS for an infinitely large lattice can be expressed as 

(2.28) 

In the large lattice limit the normalized C T M ~  commute for different values of U, 
so they have a common set of eigenvectors independent of U. Furthermore Baxter 
shows that rth largest eigenvalue of A,,(u) becomes 

A,(u) = m, exp(-i,u). (2.29) 

Here the l, and m, are independent of U. These numbers can he determined as follows: 
transform the spectral parameter U + U - i n  log p ( n  integer); from the property of the 
theta functions 

(2.30) 

it follows that the face weights a., 8.. *lo and 8, get multiplied by the following factors 
respectively: 

fi,(z - i  log p, p )  = -p-' e-2'z8,(z, p )  for j =  1,4 

e21n* 

e-2,"(uo+o*) (2.31) l1 e21n(v"+o*) 

(-l)"p-n* e-21n" , 

The factor before the brace is the same for all face weights and therefore cancels out 
of the normalized CTM; when n is a multiple of L, exp(2inA) = 1, so, as far as the 
normalized CTM is concerned, the transformation U + U - ikL log p ( k  integer) is 
equivalent to the transformation 

a, + a. (2.32a) 

P a  + P a  (2.32b) 

(2 .32~)  

(2.32d) 

where Q = -2kLw,. This gauge transformation can be rewritten more compactly as 

(2.33) 

and it results in the following transformation on the eigenvalues of A., : 

A,(u) + A,( U - ikL log p )  = exp(- i~v, , /2  +boundary terms)A,(u) (2.34) 
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where U, ,  is the value of the first height in the eigenvector of A, corresponding to the 
rth eigenvalue and the boundary terms arise from gauge factors for the outer boundary 
of the system. Since these boundary terms depend on the shape of the outer boundary 
and LHPS for a phase should not depend on the shape of the boundary, the presence 
of these terms should not affect any of the results and therefore they need not be 
considered. 

R Rietman and B Nienhuis 

It now follows from equations (2.29) and (2.34) that 

2T 
' kLE 
C = - ( f i , - k L f i u 1 , / 2 )  (2.35) 

where E is defined in equation (2.13) and fi, is an integer. 
The numbers n, = fi, - kLpu , , /2  are independent of p and U and therefore they 

can be determined by considering the ordered limit p +  1 ,  w fixed: it follows from the 
conjugate nome expressions (2.i5a-d) ihai in ihis iimii the face weights are given by 

(2.36) - , H l d . ~ , b I / L + C ~ - L ) / 2 L ~  w ( a  b ) -  a< 

where H ( d ,  a ,  b ) E  [O, L )  is given by 

f f ( d ,  d +  1 ,  d + i j  = fi-(d, d - i, d -2) = i- s 
(2.37) 

H ( d ,  d i  1 ,  d )  = { i ( s d +  L F ) }  mod L. 

Note that H ( d ,  d i 1, d )  has ajump discontinuity as a function of p when * ( s d  + L F )  = 
0 mod L. We see from (2.36) that in this limit the Lower right CTM for a lattice with 
boundary as in figure 4 and size m is diagonal and has elements 

c h c 

c b * b c  

c b e 0 e b c  

c b e 0 e O . b  c 

b e O e O e 0 e b  
c b e O e O e b  c 

c b e c e b c 

"l .L. 

c 1, e b c 

I: 1) c 

,,,,/ 

Figure 4. A lattice with the shape suitable for the CTM trick. I t  has linear size m = 4  and 
the boundary heights are fixed at the values b and e. The even and odd sublattice are 
denoted by open and closed circles respectively. 
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The boundary heights U"+, and um+2 depend on the phase (b, e )  that one is 
interested in: (U"+, , u ~ + ~ )  = (b, c). It thus follows that m, = 1 and that 

From equation (2.28) it follows that the LHPS are given by 

Here the configuration sums X"_b'(q) are defined as 
X,& jH(c,.vj+L .c,+J X b b ' ( 4 ) =  c 4 

(rr ,,.... *",I 
(2.41) 

with U,,,+, =,b, u,,,+~ = c. Using the definition (2.41) it is easily seen that configuration 
sums satisfy the following recursion relation: 

X a b c ( q )  m =z qmH(d.h .c)Xadb m-1iY)  (2.42) 
d 

with the initial condition 

X Z b ' ( q ) =  S&. (2.43) 

The solution of this recursion and the subsequent evaluation of P$"(a) in terms 
of theta functions is carried out in [2] and need not be reviewed here. We will just 
give the results: For L odd, it is found that 

pF"(a) 

and when L is even 

otherwise. 
(2.45) 

Here qhc is a function of p with jump discontinuities: 

b - c =  1 mod L 
b- c = -1 mod L. 

(2.46) c - [ ( s c / L )  + M I  
c - 1 - [ ( s c /  L)+ p] 

(2.47a) 

(2.476) 
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which are a measure for the height ordering and the sublattice ordering respectively, 
have jump discontinuities. These jump discontinuities are caused by the discontinuities 
of H ( c ,  b, c )  and lie precisely at one of the borders of the range of validity given by 
equation (2.20). Therefore we propose that these jumps have no physical meaning. 
This claim is supported by the observations that: 

R Rietman and B Nienhuis 

(i) within their range of validity the LHPJ have the expected properties 

P p ) ( a )  = Pl'lb,'(a) (2.48) 
and 

(2.49) 

(ii) the LHPS for different phases are the analytical continuation of each other 
the 'ioun&dnes: py':ol<u) is the anaiyiicai coniinuation 

of pCl.0) ( a )  as p goes through zero from above, 
while outside of their range of validity they do not have the properties (2.48) and (2.49). 

On the other hand: the P',"''(a) as given by equations (2.40) and (2.41) are well 
defined mathematically and they have an interesting property: when p is such that 
(b ,  e )  or (c,  b )  is not a ground state it is possible to find a ground state (b', c' )  such 
that nh.=.= nhc and therefore 

(2.50) 

So outside of its range of validity P F ) ( a )  can be interpreted as the LHP for a different 
phase (b', c'). This interpretation is not very satisfactory, because in equation (2.41) b 
and c can be interpreted as the heights on the boundary as in figure 4, so the most 

heights on the two sublattices fixed at the values b and c, in the limit m + CO. Whether 
this interpretation is correct will be examined in the following section. 

p',4"(a; p )  = P y ) ( a ;  p). 

'napdrz!' in?erpre!zt'lon ef * D y ( n )  Tgo.;!d be it is !he LHp for 2 !a!~ce -i:h bocE&v 

3. Fixed boundary cnnditions 

3.1. The csos model 

In this section we consider the csos models on a lattice as in figure 4. We would like 
to calculate the probability that the site in the centre of such a lattice has height a 
when the boundary heights are fixed at the values b and c. For a finite lattice of linear 
size m we will denote this probability by Q{$;'(a), the infinite lattice limit will result 
in two LHPS Q?"(a), depending on whether m goes to infinity through the even ( q  = 0) 
or odd ( q  = 1) integers. 

When p is such that (b, c )  is a ground state the LHP Pp' has a clear physical 
interpretation (see equation (2.20)) and there is no doubt that Q',"" has a clear physical 
interpretation (see equation (2.20)) and there is no doubt that Q',"."=Pp'. For 
non-ground state boundary conditions we would like to know whether Qp) and P y '  
as defined by equation (2.40) are still equal. 

Unfortunately, an analytical calculation of Q',"." for all values of p, U and p is 
beyond our capacities at the moment: we can calculate them only in the ordered limit 
p +  1; in this limit the L H P ~  follow directly from the ground states. The calculation is 
done for the case L= 3, s = 2 in appendix B. It tums out that PPI and QF' are not 
the same. 
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It is not difficult to see why the two L H P ~  P and Q can he different for non-ground 
state boundary conditions: equation (2.29) for the eigenvalues of the normalized 
transfer matrix was derived by Baxter assuming that the boundary of the system was 
of no importance. For ground state boundary conditions this assumption is correct, 
but for non-ground state boundary conditions this may not be the case, since there has 
to be an interface between the bulk of the system and the boundary, as shown in 
appendix B. This interface can spoil the nice properties of the CTM. In particular, the 
neglect of the boundary terms in equation (2.34) is no longer correct. 

The discontinuous (first order) anisotropy-dependent transition that is found in 
appendix B for x-* 0 will persist for positive x. However, we expect the locus to change 
as a function of x so that the sharp edges in figure 7 are rounded off. Whether this 
boundary induced transition is accompanied by essential ‘droplet’ singularities in the 
free energy and the order parameters we do  not know for sure, but they will not occur 
in the buik free energy and in the order parameters For a system with free boundaries 
as calculated in  [Z] and there is circumstantial evidence-from the Ising model-that 
the boundary free energy has no essential singularity either. 

3.2. The king model 

A similar anisotropy-dependent transition can also be observed in the king model 
with appropriate boundary conditions as in figure 5. When the ferromagnetic couplings 
in the horizontal and vertical direction are given by J ,  and J2 respectively and when 
the lattice has size N ,  x N2 the ground state is ‘all plus’ when NJ,> N J ,  and ‘all 
minus’ when NIJ2 < N J , .  This transition will persist at finite temperatures below T,. 

4 +  + + + + 3  

1 2 + t i- + + 
Figure 5. The boundary Conditions in the king model. The spins reside on the open circles. 
The dual lattice is also shown. 

The partition function of this model can be written in a ‘low temperature’expansion 

z = x -  Y 1 X * Y ”  (3.1) 

where x = exp( -2K,), y = exp(-2K,) and Ki  = /3Ji. The sum is over all graphs on the 
dual lattice consistent with the boundary conditions; h and U are the number of 
horizontal and vertical bonds of the graph. 

as 
N , ( N 2 + 1 ) / 2  - N * ( N , + l ) / Z  

graphs 
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Following Vdovichenko [9]  we rewrite the sum over graphs as 

(det(E -W))1'2[M4,1MJ,z+ M2.1M3,4 - MJ.1M4,21 (3.2) 

where W and E are matrices of which the indices correspond to directed links of the 
dual lattice. They can be expressed as 

E = 1 N ~ + I  @ 1 N ~ + I Q  14  (3.3) 

and 

x 0 0 0  0 s - 1 6  0 0 
W=UN,+IQ~N~+IQ[ '2 0 0 0  o]+l~,+~Qu~...[# s$ 

s - 1 6  0 0 0 

(3.4) 

1 0 0 0  y 1 
Here 1, denotes the n x n unit matrix, U. is the n x n matrix with elements ( = Si,j+l 
(1 s j s  n - I), s = ein'4 and the tilde denotes transposition. 

The factor between square brackets in equation (3.2) must be read as follows: the 
four comers of the dual lattice are numbered counterclockwise starting in the lower 
left corner as in figure 5 .  M;,j is equal to the sum over all 'walks' from corner j to 
comer i of the quantity 

(- 1) #relf-intcrrections #horizontal 11cp6 #venical steps 
X Y 

As implied in [9] it can easily be related to matrix elements of 

(3.66) 
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and because of symmetry 

M 3 . 2 ~  M4.1 ( 3 . 6 ~ )  

Mz,I (X,Y,NI ,  NZ)=M~,I(Y,X,NZ,NI) (3 .6d)  

% A  = M2.1 ( 3 . 6 ~ )  

M4z= W.3. (3.6f 1 
The directed links are labelled by the site from which they originate and the direction 

in which they point. 
The factor between square brackets in equation (3.2) incorporates the effect of the 

boundary conditions: replacing it by unity gives the partition function for the ‘all plus’ 
or ‘all minus’ boundary condition. So all information about the anisotropy-dependent 
transition is contained within the last factor. 

The contribution to the total free energy from the ‘non-groundstate’ boundary 
conditions is therefore 

W - 0  log[M:,l+M&-M:,l]. (3.7) 

In the limit of large N,, N2 with N2/ N, constant 6F can develop singularities as 
a function of x and y. Singularities arise either when one of the Mj,j becomes singular 
or when one of the M,,  dominates the other ones in a part of the x-y plane: at the 
boundaries of these regimes 6F gets a cusp. 

The first kind of singularity does not occur: the M,j themselves are regular. This 
may be understood as follows: M, is also equal to the two spin correlation function 
(u<q) of two corner spins in the dual model with free boundary conditions and with 
coupling constants El and k2 given by tanh kl = x, and tanh & = y .  Since for high 
dual temperatures (i.e. low temperatures in the original Ising model) the two-spin 
correlation functions decay exponentially, the non-groundstate boundary conditions 
result in a correction to the free energy per site of order N;’ which is regular in x 
and y, apart from a cusp. 

For low dual temperatures (i.e. for high temperatures in the original model) the 
two-spin correlation functions approach a non-zero constant, the square of the corner 
magnetization, which is regular in x and y,  so in this case the correction to the free 
energy per site is of order N-’ and regular. 

4. Alternative calculation of the critical indices 

The purpose of this section is to show that the critical indices of the csos model can 
be computed by elementary means making use of its relation to the Coulomb gas or 
Gaussian model. We first note that the csos model as defined by [Z] can be viewed 
as a BCSOS model [IO] with a field or a modulation of the weights that is periodic in 
the heights. In this formulation the height variables take all integer values and the 
weights of the model are invariant for simultaneous translations of the heights by 
multiples of L. The weights of this periodic BCSOS model are still those defined by 
equations (2 .2 (a -d ) ) ,  with the heights no longesdefined mod L, but simply as integers. 

As argued in [ll] the BCSOS model (without fields) is in its scaling behaviour 
equivalent to a Gaussian model. Since the Gaussian model can be easily solved, many 
of the critical properties of the BCSOS model, and therefore also of the csos models, 
follow readily from this equivalence. Without repeating the arguments in full, we 
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remind the reader that they are based on the assumption of the existence of a 
renormalization transformation that connects the discrete BCSOS model to a Gaussian 
model in which the variables are continuous versions of the original heights. All critical 
exponents of the Gaussian model depend on only one variable. The value of this 
variable is determined by the knowledge of one exponent, which we have from previous 
exact solutions, e.g., that of the symmetric eight vertex model [12]. Thus all other 
exponents follow. 

R A  -.., ..,- .AI :- n-nnr..~ tnrm. -+- +ha --..- Pn..P..rae r l l i  ,.F 

equivalence concerning the critical behaviour of the BCSOS models. The starting point 
is a BCSOS model with weights given by equations (Z.ll(a-d)). For convenience we 
choose U = A/2, and furthermore we multiply the weight W(," i) by a gauge factor 
[ S , ( w , , p ) 9 ~ ( w , , p ) / ( 9 , ( w . , p ) 9 ( w , , p ) ) ] 1 ' 4 ,  so that for all values o f p  the weights are 
invariant for rotation over 7r/2. When the weights are modulated by a factor 

(4.1) 
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1 f p  cos( 4 + a m )  

the free energy of the model changes by an amount proportional to 

that is only when y ,  > 0. The singular dependence of the free energy on the strength 
of the field is caused by the collective ordering of the model, so that one value of the 
heights is more probable than the others. As a result also the Fourier transforms of 
the LHP acquire a non-zero value, which again depends singularly on the strength of 
the field: 

The modulation of the weights of the csos model slightly away from its critical 
point is easily computed as the logarithmic derivative of the weights with respect to p 
at p = 0. This results in 

'log "- 2(sin A)2  C O S [ ~ ~ (  TI - A )  - 2 w J  
a log (1. - 

JP JP 
(4.4) 

These modulations are written in this form to make apparent the analogy with equation 
(4.1). This is more clear when one notes that the average height of the configurations 
with weight a. and p. is a and with weight 'yo and Sa+, is a + f .  The frequency of the 
thermal modulation of the csos model is apparently o = 2 ~ - 2 A .  This immediately 
leads to the thermal critical exponent (1 = 2 - 2 / y y  = 2 - r/ A = 2 - L / s ,  in agreement 
with [2]. 

The exponents associated with the Fourier transforms of the LHPS, equations 
(2.47a. b) can be found similarly. For the symmetric order parameter Sp' clearly the 
frequency 8 = 2 r j /  L. For the antisymmetric order parameter R;"' one should note that 
in the BCSOS model the two terms of the summand of equation (2.47(b)) cannot be 
both non-zero for a model with fixed boundaries, since then each sublattice assumes 
only even or only odd values. Therefore the two terms can be written in the same form 
and with the same sign as e~p[?r ia (2 j -L) /L]P '~ . ' ' (a ) ,  of which the frequency is 
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& = 4 2 j  - L ) / L .  The exponents of the symmetric and the antisymmetric order para- 
meter follow from equation (4.3): 

- j 2  (Zj - L)’ p.=- and p. = ’ s ( L - s )  ’ 4s(L-s)  (4.5) 

The method presented here is capable only of producing critical exponents. The 
coefficients of the singular terms cannot be produced, let alone the behaviour further 
away from the critical point. However, from the above it should be clear that the 
exponents of a larger class of models can be computed than those for which the analytic 
solution exists. In the exponents derived above we made no use of the relation between 
the frequency of the thermal modulation and A, and therefore we claim for the equations 
(4.2) and (4.3) a more general applicability. 
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Appendix A. Bulk ground states 

In this appendix we consider bulk ground states for the ordered limit p +  1 ,  U and p 
fixed. We use the conjugate nome expressions (2.15(a-d)) with 

where 

Y =?E [ 0, ;] . 
n 

Leaving out the overall factor p ( u )  the face weights become 

The weights have the obvious property 

0. (.+;) = O.+,(P) for o = a, p, y, 8 

and s and L are coprime. Therefore it is sufficient to consider the regime O <  p< 1/L, 
the ground states in the other regimes can then easily be deduced. 
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Table 1. The exponents characterizing the asymptotic behaviour of the face weights as 
x+Ofor the L = 3 ,  s=2model in the sectorOCp<f: O.-X""'). 

U 0 Y 

I Y 

2 Y 

B O  3 p - "  
1 1 - v - 3 p  
2 I-" 

We present the calculation for the model with L = 3, s = 2, for simplicity. We first 
determine the asymptotic behaviour of the face weights as x + 0 using the properties 
(2.17a-c) of the E-function. It is given by a power law 

as x+O. ( A 9  

The exponents e(w,  a)  for 0 < p < f are given in table 1. From this table one can read 
off that for O <  v < $  the only configurations with non-vanishing weight in the limit 
x+Oarethechequerboardconfigurations(O, 1) and(1,O): theweightpersite(y,S,)'"+ 
1, whereas the weight goes to zero for other configurations. 

This shows that, at least for the L = 3, s = 2 model, the bulk ground states in the 
limit p + 1, U fixed are the same as those in the limit p + 1, w fixed. 

w~ - x=(Y,.) 

Appendix B. Ground states for a system with fixed boundaries 

In this appendix we calculate the L H P ~  Q y i ( a )  in the limit p +  1, U fixed. Again we 
can restrict ourselves to the regime O <  p< 1/L: it follows from equation (A4) that the 
LHPS have the property: 

and, obviously, 

We shall consider the L = 3, s = 2 model again. Since for 0 < p <$ the 'bulk' of the 
system will be in the (1,O) phase, there are two ground state candidates, corresponding 
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to (., e ) =  (LO) resp. ( 0 ,  0 )  = (0, 1) in the bulk (see figure 4); near the boundary there 
has to be an interface in order to satisfy both the adjacency requirements and the 
boundary conditions. 

Because of the non-groundstate boundary conditions the weights of the configura- 
tions vanish as a power of x in the limit x + 0. The configuration for which this power 
is lower in the limit m + 00 is the true ground state for a large lattice with boundary 
conditions (b, c ) .  This ground state determines the x+O limit of the LHP Q(,h.'(a) in 
the same way as the bulk ground states determine the x+O limit of the LHPS P:"(a). 

In figure 6 the two ground state candidates for the (2 ,O)  boundary condition and 
lattice size m = 4 are shown. For general values of m both contain ( m  - 1)( m - 2) 'bulk' 
faces of type (A y )  and also ( m  - l ) ( m  -2) faces of type ( y  A); the difference lies in the 
faces near the boundary. 

O ? U  
O Z l Z O  

O ? I O L ? O  

0 2 ~ n ~ o ~ z n  

2 I Q I U I O l 2  

o ~ ~ o i n 1 2 0  

O ?  1 1 1  1 2 0  

O l l Z O  

10.11 U ? "  

Figure 6. The two ground State candidates for the (2.0) boundary condition. 

The (1,O) configuration has 2m faces of type (i :) and of type (: i) and m - 1  
faces of types ( y  i), (A :), ( y  A) and (i ?), whereas the (0 , l )  configuration has m faces 
of types (? :), (i ',), (i i) and(: i) and m - 1 configurations of types ( h  :), ( y  i), (: :) 
and (; A). The boundary weights are therefore 

for the (1,O) configuration and 

for the (0, I) configuration. 
Using the asymptotic behaviour of the face weights from table 1 we readily find 

the ground states in the limit m+co as a function of f i  and v. The result is shown in 
figure I. 
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: :: I 
I 

8, 213 

Figure 7. The ground states for the (2,0! boundary condition in the regime O <  p<+ as a 
function of U. 

For the (2 , l )  boundary condition we find a similar picture, whereas the boundary 
conditions ( 0 , 2 )  and ( 1 , 2 )  are like ground state boundary conditions in that they 
favourthesamegroundstateinthe entireregimeO<p<f,O< U<:: for(0,2) boundary 
conditions the ground state is (0, l ) ,  for (1.2) boundary conditions the ground state 
is (1,O). 

ine  x + u  umu 01 vy . \a )  IUIIUWS uirtmry [rum iiirse gruuriu scales, SO ii need 
not be given separately. 

For higher L-values there are more ground state candidates and consequently the 
determination of the actual ground state becomes more involved, but the overall picture 
doesn't change: for every boundary condition there is an interval in p for which the 
ground state depends discontinuously-in the sense that the ground states on either 
side ofthis transition cannot locally be transformed into one another-on the anisotropy 
U, except when s = L -  1 and L is even. In that case there is no discontinuity in the 
ground state; apparently the interface is not important and therefore Q(,b.'(a) = 
P',b"(a). This is of course consistent with the fact that the analytical continuation in 
p of P',"''(a) has period 1 in that case. 

m-. . n s ! ~ - . : .  r n i b . c l i ~ \  P - S . . ~ ~  >:~.-.$.. P ..-. .L.-- --.~~_I ~~ .... 
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